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Abstract

The 2dF Galaxy Redshift Survey (2dFGRS) has produced a three-dimensional map of the
distribution of 221,000 galaxies covering 5% of the sky and reaching out to a redshiftz≈ 0.3.
This is first map of the large-scale structure in the local Universe to probe a statistically
representative volume, and provides direct evidence that the large-scale structure of the Uni-
verse grew through gravitational instability. Measurements of the correlation function and
power spectrum of the galaxy distribution have provided precise measurements of the mean
mass density of the Universe and the relative contributionsof cold dark matter, baryons, and
neutrinos. The survey has produced the first measurements ofthe galaxy bias parameter and
its variation with galaxy luminosity and type. Joint analysis of the 2dFGRS and cosmic mi-
crowave background power spectra gives independent new estimates for the Hubble constant
and the vacuum energy density, and constrains the equation of state of the vacuum.

1.1 Introduction
The 2dF Galaxy Redshift Survey (2dFGRS) was made possible bythe 2-degree

Field (2dF) fiber spectrograph, which was specifically conceived as a tool for performing
a massive redshift survey to precisely measure fundamentalcosmological parameters. The
state-of-the-art redshift surveys of the early 1990’s, such as the Las Campanas Redshift Sur-
vey (Shectman et al. 1996) and theIRASPoint Source Catalog redshift survey (Saunders
et al. 2000), either did not cover sufficiently large volumesto be statistically representa-
tive of the large-scale structure, or covered large volumestoo sparsely to provide precise
measurements. An order-of-magnitude increase in the survey volume and sample size was
needed to enter the regime of “precision cosmology,” and this became the foundational goal
of the 2dFGRS.

The 2dF spectrograph can observe 400 objects simultaneously over a 2◦-diameter field of
view (Taylor & Gray 1990; Lewis et al. 2002a), and was first placed on the Anglo-Australian
Telescope (AAT) in November 1995. The first spectra were taken in mid-1996, and sched-
uled observations with 2dF at full functionality began in September 1997. The first major
redshift survey observing run occurred in October 1997, with the survey passing 50,000
redshifts in mid-1999 (Colless 1999) and 100,000 redshiftsin mid-2000. The first 100,000
redshifts and spectra were released publicly in June 2001 (Colless et al. 2001), and the
200,000-redshift mark was achieved toward the end of 2001. The survey observations were
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Fig. 1.1. A map of the sky showing the locations of the two 2dFGRS survey strips
(NGP strip at left, SGP strip at right) and the random fields. Each 2dF field in
the survey is shown as a small circle; the sky survey plates from which the source
catalog was constructed are shown as dotted squares. The scale of the strips at the
mean redshift of the survey is indicated.

completed in April 2002, after 5 years and 272 nights on the AAT. The final survey is an
order of magnitude larger than any previous redshift survey, and comparable to the ongoing
redshift survey of the Sloan Digital Sky Survey (Bernardi, this volume).

The source catalog for the 2dFGRS was a revised and extended version of the APM galaxy
catalog (Maddox et al. 1990), which was created by scanning the photographic plates of the
UK Schmidt Telescope Southern Sky Survey. The survey targets were chosen to be galax-
ies with extinction-corrected magnitudes brighter thanbJ = 19.45 mag. The galaxies were
distinguished from stars by the APM image classification algorithm described by Maddox
et al., conservatively tuned to include all galaxies at the expense of also including a 5%
contamination by stars.

The main survey regions were two declination strips, one in the southern Galactic hemi-
sphere spanning 80◦×15◦ around the South Galactic Pole (the SGP strip), and the otherin
the northern Galactic hemisphere spanning 75◦×10◦ along the celestial equator (the NGP
strip); in addition, there were 99 individual 2dF “random” fields spread over the southern
Galactic cap (see Fig. 1.1). The large volume that is sparsely probed by the random fields
allows the survey to measure structure on scales greater than would be permitted by the rel-
atively narrow widths of the main survey strips. In total, the survey covers approximately
1800 deg2, and has a median redshift depth ofz = 0.11. An adaptive tiling algorithm was
used to optimally place the 900 2dF fields over the survey regions, giving a highly complete
and uniform sample of galaxies on the sky.

Redshifts were measured from 2dF spectra that covered the range from 3600 Å to 8000 Å
at a resolution of 9.0 Å. Redshift measurements were obtained both from cross-correlation
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Fig. 1.2. The large-scale structures in the galaxy distribution are shown in this 3◦-
thick slice through the 2dFGRS map. The slice cuts through the NGP strip (at left)
and the SGP strip (at right), and contains 63,000 galaxies.

with template spectra and from fitting emission lines. All redshifts were visually checked
and assigned a quality parameterQ in the range 1–5; accepted redshifts (Q≥3) were found
to be 98% reliable and to have a typical uncertainty of 85 kms−1. The overall redshift
completeness for accepted redshifts was 92%, although thisvaried with magnitude. The
variation in the redshift completeness with position and magnitude is fully accounted for by
the survey completeness mask (Colless et al. 2001; Norberg et al. 2002b).

Figure 1.2 shows a thin slice through the three-dimensionalmap of over 221,000 galaxies
produced by the 2dFGRS. This 3◦-thick slice passes through both the NGP strip (at left) and
the SGP strip (at right). The decrease in the number of galaxies toward higher redshifts is
an effect of the survey selection by magnitude — only intrinsically more luminous galaxies
are brighter than the survey magnitude limit at higher redshifts. The clusters, filaments,
sheets and voids making up the large-scale structures in thegalaxy distribution are clearly
resolved. The fact that there are many such structures visible in the figure is a qualitative
demonstration that the survey volume comprises a representative sample of the Universe;
the small amplitude of the density fluctuations on large scales is quantified by the power
spectrum, as discussed in the next section.

1.2 The Large-scale Structure of the Galaxy Distribution
In cosmological models where the initial density fluctuations form a Gaussian ran-

dom field, such as most inflationary models, the large-scale structure of the galaxy distribu-
tion in the linear regime is completely characterized in statistical terms by just two quantities:
the mean density and the rms fluctuations in the density as a function of scale. The latter are
quantified either through the two-point correlation function or the power spectrum, which
are Fourier transforms of each other. However, a redshift survey does not determine the
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Fig. 1.3. Large-scale structure statistics from the 2dFGRS. The left panel shows
the dimensionless power spectrum∆

2(k) (Percival et al. 2001; Peacock et al. 2003).
Overlaid are the predicted linear-theory CDM power spectrawith shape parameters
Ωh = 0.1, 0.15, 0.2, 0.25, and 0.3, with the baryon fraction predicted by Big Bang
nucleosynthesis (solid curves) and with zero baryons (dashed curves). The right
panel shows the two-dimensional galaxy correlation function, ξ(σ,π), whereσ is
the separation across the line of sight andπ is the separation along the line of
sight (Hawkins et al. 2003). The greyscale image is the observedξ(σ,π), and the
contours show the best-fitting model.

real-space positions of the galaxies, but rather the redshift-space positions, where the line-
of-sight component is not the distance to the galaxy but the galaxy’s velocity. This velocity
is the combination of the Hubble velocity (whichis directly related to the distance) and the
galaxy’s peculiar velocity (the motion produced by the gravitational attraction of the local
mass distribution).

The statistical properties of the large-scale structure ofthe galaxy distribution observed in
redshift space are summarized in Figure 1.3, which shows both the correlation function and
the power spectrum obtained from the 2dFGRS. The structure on very large scales (several
tens to hundreds of Mpc) is best represented by the power spectrum; on smaller scales, where
peculiar velocities become more significant and the shape ofthe power spectrum (as well as
the amplitude) differs between redshift space and real space, the redshift-space structure is
most clearly shown in the two-dimensional correlation function (see §1.4 below).

The power spectrum, shown in the left panel of Figure 1.3, is well determined from the
2dFGRS on scales less than about 400h−1Mpc (wavenumbersk > 0.015), and its shape is
little affected by nonlinear evolution of the galaxy distribution on scales greater than about
40h−1Mpc (k < 0.15). Over this decade in scale, the power spectrum is well fitted by a
cold dark matter (CDM) model having a shape parameterΓ = Ωmh = 0.20±0.03 (Percival
et al. 2001). For a Hubble constant around 70kms−1Mpc−1 (i.e., h ≈ 0.7), this implies a
mean mass densityΩm ≈ 0.3. The power spectrum also shows some evidence for acoustic
oscillations produced by baryon-photon coupling in the early Universe (see §1.5).

The right panel of Figure 1.3 shows the redshift-space two-point correlations as a function
of the separations along and across the line of sight, and reveals two main deviations from
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circular symmetry due to peculiar velocity effects. On intermediate scales, for transverse
separations of a few tens of Mpc, the contours of the correlation function are flattened along
the line of sight due to the coherent infall of galaxies as structures form in the linear regime.
The detection of this effect in the 2dFGRS is a clear confirmation that large-scale structure
grows by the gravitational amplification of density fluctuations (Peacock et al. 2001), and
allows a direct measurement of the mean mass density of the Universe (see §1.5). The other
effect is the stretching of the contours along the line of sight at small transverse separations.
This is the finger-of-God effect due to the large peculiar velocities of collapsed structures in
the nonlinear regime.

1.3 The Bias of the Galaxy Distribution
A fundamental issue in employing redshift surveys of galaxies as probes of cosmol-

ogy is the relationship between the observed galaxy distribution and the underlying mass
distribution, which is what cosmological models most directly predict. Some bias of the
galaxies with respect to the mass is expected on theoreticalgrounds, but the nature and ex-
tent of the effect was not previously well determined. The large size of the 2dFGRS has
allowed a thorough investigation of this question.

The simplest model for galaxy biasing postulates a linear relation between fluctuations in
the galaxy distribution and fluctuations in the mass distribution: δn/n = bδρ/ρ. In this case
the galaxy power spectrum is related to the mass power spectrum byPg(k) = b2Pm(k). Such
a relationship is expected to hold in the linear regime (up tostochastic variations). The first-
order relationship between galaxies and mass can thereforebe determined by comparing
the measured galaxy power spectrum to the matter power spectrum based on a model fit to
the cosmic microwave background (CMB) power spectrum, linearly evolved toz = 0 and
extrapolated to the smaller scales covered by the 2dFGRS power spectrum. Applying this
approach, Lahav et al. (2002) find that the linear bias parameter for anL∗ galaxy at zero
redshift isb(L∗,z= 0) = (0.96±0.08)exp[−τ + 0.5(n− 1)], whereτ is the optical depth due
to reionization andn is the spectral index of the primordial mass power spectrum.

An alternative way of determining the bias employs the higher-order correlations be-
tween galaxies in the intermediate, quasi-linear regime. The higher-order correlations are
generated by nonlinear gravitational collapse, and so depend on the clustering of the domi-
nant dark matter rather than the galaxies. Thus the strongerthe higher-order clustering, the
higher the dark matter normalization, and the lower the bias. An analysis of the bispec-
trum (the Fourier transform of the three-point correlationfunction) by Verde et al. (2002)
yieldsb(L∗,z= 0) = 0.92±0.11, a result based solely on the 2dFGRS. Moreover, including
a second-order quadratic bias term does not improve the fit ofthe bias model to the observed
bispectrum.

For the blue-selected 2dFGRS sample, it therefore seems that L∗ galaxies are nearly
unbiased tracers of the low-redshift mass distribution. However, this broad conclusion
masks some very interesting variations of the bias parameter with galaxy luminosity and
type (Fig. 1.4). Norberg et al. (2001, 2002a) show conclusively that the bias parameter
varies with luminosity, ranging fromb = 1.5 for bright galaxies tob = 0.8 for faint galaxies.
The relation between bias and luminosity is well represented by the simple linear relation
b/b∗ = 0.85+ 0.15L/L∗. They also find that, at all luminosities, early-type galaxies have a
higher bias than late-type galaxies. A detailed comparisonof the clustering of passive and
actively star-forming galaxies by Madgwick et al. (2003) shows that at small separations,
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Fig. 1.4. Variations in the bias parameter with luminosity and spectral type. The
left panel shows the variation with luminosity of the galaxybias on a scale of
∼5h−1Mpc, relative to anL∗ galaxy (Norberg et al. 2002a). The bias variations
of the full 2dFGRS sample are compared to subsamples with early and late spectral
types, and to earlier results by Norberg et al. (2001). The right panel shows the
relative bias of passive and actively star-forming galaxies as a function of scale,
over the range 0.2–20h−1Mpc (Madgwick et al. 2003).

the passive galaxies cluster much more strongly, and the relative bias (bpassive/bactive) is a
decreasing function of scale. On the largest scales, however, the relative bias tends to a
constant value of around 1.3.

1.4 Redshift-space Distortions
The redshift-space distortion of the clustering pattern can be modeled as the com-

bination of coherent infall on intermediate scales and random motions on small scales. The
compression of structures along the line of sight due to coherent infall is quantified by the
distortion parameterβ ' Ω

0.6/b (Kaiser 1987; Hamilton 1992). The random motions are
adequately modeled by an exponential distribution,f (υ) = 1/(a

√
2)exp(−

√
2|υ|/a), where

a is the pairwise peculiar velocity dispersion (also calledσ12).
The initial analysis of a subset of the 2dFGRS by Peacock et al. (2001) obtained best-fit

values ofβ(Ls,zs) = 0.43± 0.07 anda = 385 kms−1 at an effective weighted survey lumi-
nosityLs = 1.9L∗ and survey redshiftzs = 0.17. A more sophisticated reanalysis of the full
2dFGRS by Hawkins et al. (2003) obtainsβ(Ls,zs) = 0.49±0.09 anda = 506±52 kms−1,
with Ls = 1.4L∗ andzs = 0.15 (right panel of Fig. 1.3). These results, using differentfit-
ting methods, are consistent, although the earlier result underestimates the uncertainties by
20%. Applying corrections based on the variation in the biasparameter with luminosity and
a constant galaxy clustering model (Lahav et al. 2002) to theHawkins et al. value for the
distortion parameter yieldsβ(L∗,z= 0) = 0.47±0.08.

Madgwick et al. (2003) extend this analysis to a comparison of the active and passive
galaxies, where the two-dimensional correlation function, ξ(σ,π), reveals differences in
both the bias parameter on large scales and the pairwise velocity dispersion on small scales
(Fig. 1.5). The distortion parameter isβpassive'Ω

0.6
m /bpassive= 0.46±0.13 for passive galax-
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Fig. 1.5. The two-dimensional galaxy correlation function, ξ(σ,π), for passive
(left) and actively star-forming (right) galaxies (Madgwick et al. 2003). The
grayscale image is the observedξ(σ,π), and the contours show the best-fitting
model.

ies andβactive'Ω
0.6
m /bactive= 0.54±0.15 for active galaxies; over the range 8–20h−1Mpc the

effective pairwise velocity dispersions are 618±50 kms−1 and 418±50 kms−1 for passive
and active galaxies, respectively.

1.5 The Mass Density of the Universe
The 2dFGRS provides a variety of ways to measure the mean massdensity of the

Universe, along with the relative amounts of dark matter, baryons, and neutrinos.
Fitting the shape of the galaxy power spectrum in the linear regime with a model including

both CDM and baryons (Percival et al. 2001), and assuming that the Hubble constant is
h = 0.7 with a 10% uncertainty, yields a total mass density for the Universe ofΩm = 0.29±
0.07 and a baryon fraction of 15%± 7% (i.e., Ωb = 0.044± 0.021). This analysis used
150,000 galaxies; a preliminary reanalysis of the completefinal sample of 221,000 galaxies
with the additional constraint thatn = 1 yieldsΩm = 0.26± 0.05 andΩb = 0.044± 0.016
(Peacock et al. 2003; left panel of Fig. 1.6). Including neutrinos as a further constituent of
the mass allows an upper limit to be placed on their contribution to the total density, based
on the allowable degree of suppression of small-scale structure due to the free streaming
of neutrinos out of the initial density perturbations (right panel of Fig. 1.6). Elgarøy et al.
(2002) obtain an upper limit on the neutrino mass fraction of13% at the 95% confidence
level (i.e.,Ων < 0.034). This translates to an upper limit on the total neutrinomass (summed
over all species) ofmν < 1.8eV.

An alternative approach to deriving the total mass density is to use the measurements in
the quasi-linear regime of the redshift-space distortion parameterβ 'Ω

0.6
m /b, in combination

with estimates of the bias parameterb (Peacock et al. 2001; Hawkins et al. 2003). Using the
Lahav et al. (2002) estimate forb givesΩm = 0.31±0.11, while the Verde et al. (2002) value
for b givesΩm = 0.23±0.09.
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Fig. 1.6. Determinations of the mean mass density,Ωm, and the baryon and neu-
trino mass fractions. The left panel shows the likelihood surfaces obtained by fit-
ting the full 2dFGRS power spectrum for the shape parameter,Ωmh, and the baryon
fraction,Ωb/Ωm (Peacock et al. 2003; cf. Percival et al. 2001). The fit is overthe
well-determined linear regime (0.02< k < 0.15hMpc−1) and assumes a prior on
the Hubble constant ofh = 0.7±0.07. The right panel shows the fits to the 2dF-
GRS power spectrum (Elgarøy et al. 2002), assumingΩm = 0.3, ΩΛ = 0.7, and
h = 0.7 for three different neutrino densities:Ων = 0 (solid), 0.01 (dashed), and
0.05 (dot-dashed).

1.6 Joint LSS-CMB Estimates of Cosmological Parameters
Stronger constraints on these and other fundamental cosmological parameters can

be obtained by combining the power spectrum of the present-day galaxy distribution from
the 2dFGRS with the power spectrum of the mass distribution at very early times derived
from observations of the anisotropies in the CMB. A general analysis of the combined CMB
and 2dFGRS data sets (Efstathiou et al. 2002) shows that, at the 95% confidence level, the
Universe has a near-flat geometry (Ωk ≈ 0± 0.05), with a low total matter density (Ωm ≈
0.25±0.08) and a large positive cosmological constant (ΩΛ ≈ 0.75±0.10, consistent with
the independent estimates from observations of high-redshift supernovae).

If the models are limited to those with flat geometries (Percival et al. 2002), then tighter
constraints emerge (see Table 1.1). In this case the best estimate of the matter density is
Ωm = 0.31±0.06, and the physical densities of CDM and baryons areωc =Ωch2 = 0.12±0.01
andωb = Ωbh2 = 0.022± 0.002; the latter agrees very well with the constraints from Big
Bang nucleosynthesis. This analysis also provides an estimate of the Hubble constant
(H0 = 67±5kms−1 Mpc−1) that is independent of, but in excellent accord with, the results
from theHubble Space TelescopeKey Project. Comparing the uncertainties on the vari-
ous parameters in the CMB-only and CMB+2dFGRS columns of Table 1.1 shows the very
significant improvements that are obtained by combining theCMB and 2dFGRS data sets.

Joint fits to the 2dFGRS and CMB power spectra also constrain the equation of state pa-
rameterw = pvac/ρvacc2 for the dark energy. Percival et al. (2002) find that in a flat Universe
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Table 1.1.Cosmological parameters from joint fits to the CMB and 2dFGRS
power spectra, assuming a flat geometry (Percival et al. 2002).

Note: the best-fit parameters and rms errors are obtained by marginalizing over the likelihood

distribution of the remaining parameters. Results are given for scalar-only and scalar+tensor models,

and for the CMB power spectrum only and the CMB and 2dFGRS power spectra jointly.

the joint power spectra, together with the Hubble Key Project estimate forH0, imply an
upper limit ofw < −0.52 at the 95% confidence level.

1.7 The Galaxy Population
Alongside these cosmological studies, the 2dFGRS has also produced a wide range

of results on the properties of the galaxy population, and provided strong new constraints for
models of galaxy formation and evolution. Highlights in this area to date include: (1) precise
determinations of the optical and near-IR galaxy luminosity functions (Cole et al. 2001;
Norberg et al. 2002b); (2) a detailed characterization of the variations in the luminosity
function with spectral type (Folkes et al. 1999; Madgwick etal. 2002); (3) a determination
of the bivariate distribution of galaxies over luminosity and surface brightness (Cross et al.
2001); (4) a constraint on the space density of rich clustersof galaxies from the velocity
dispersion distribution for identified clusters (De Propris et al. 2002); (5) separate radio
luminosity functions for AGNs and star-forming galaxies (Sadler et al. 2002; Magliocchetti
et al. 2002); (6) constraints on the star formation history of galaxies from the mean spectrum
of galaxies in the local Universe (Baldry et al. 2002); (7) a measurement of the environmental
dependence of star formation rates of galaxies in clusters (Lewis et al. 2002b); and (8) a
comparison of the field and cluster luminosity functions forgalaxies with difference spectral
types (De Propris et al. 2003).

The next step will be to further investigate the correlations between these properties and
the local environment of each galaxy, quantified through thelocal galaxy density or the
new group and cluster catalog that has been constructed fromthe positions and velocity
information in the 2dFGRS (Eke et al. 2003; see Fig. 1.7).

1.8 Conclusions
The measurement of cosmological parameters from the 2dFGRShas made a sig-

nificant contribution to shaping the current consensus model for the fundamental properties
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Fig. 1.7. A redshift slice showing the distribution of groups and clusters identi-
fied within the 2dFGRS using a three-dimensional friends-of-friends algorithm in
position and redshift space (Eke et al. 2003). The number of members found in
each cluster is shown by different gray shading; the estimated velocity dispersion
is indicated by the size of the dot.

of the Universe that has emerged from a range of independent observations, including the
measurements of the CMB anisotropies, the distances to high-redshift supernovae, and Big
Bang nucleosynthesis. The results obtained to date only represent a fraction of the informa-
tion that can be extracted from the 2dFGRS on the properties of galaxies and their relation
to the large-scale structure of the galaxy distribution. Much more is still to emerge from
analysis of the survey, and from combining the 2dFGRS with other large surveys and with
detailed follow-up observations.

Further information on the 2dF Galaxy Redshift Survey can befound on the WWW at
http://www.mso.anu.edu.au/2dFGRS.

Acknowledgements. These results are presented on behalf of the 2dFGRS team: Ivan K.
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